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AlmtraetmThe area-averaged two-fluid model formulation of a separated two-phase flow system 
is used to investigate interracial stability of liquid film flows. The analysis takes into account the 
effects of phase change at the interface as well as the dynamic effects of the adjacent vapor flow 
on the interfacial stability. Wave formation and instability criteria are established in terms of the 
generalized fluid and flow parameters. The criteria are applied to investigate the stability of laminar 
liquid film flow with interracial shear and phase change. The influence of various dimensionless 
parameters characterizing film thickness, gravity, phase change and inteffacial shear are studied 
with respect to the neutral stability, temporal growth factor and the wave propagation velocity. 
The results of the present study indicate that the interfacial stability analysis developed within the 
frame of the two-fluid model formulation proves to be quite accurate as judged by comparing its 
results with the available experimental data and with the results of much longer and more complex 
analytical investigations which are valid only for the liquid film free of interfadal shear. 

INTRODUCTION 

The flow of liquid films adjacent to a gas or vapor flow is a separated two-phase flow 
pattern of interest to various technologies because many engineering operations and 
systems are greatly affected by the behavior of such films. The problem considered in this 
study is of importance in the chemical process, nuclear reactor and power generating 
industries. The performance of various units used in these plants is influenced by the 
dynamics of flow fields because the processes of heat and mass transfer, which occur in 
these systems, are intimately connected to fluid motion. For example, the increased rates 
of transport of momentum (Dukler 1972), heat (Chand & Rosson 1965; Williams etal .  
1968; Fedotkin & Firisyuk 1969), and of mass (Emmert & Pigford 1954; Jepsen et al. 1966; 
Stainthrop & Wild 1967), in both liquid and gas phases, are very often related to the wavy 
nature of the film flow interface. 

For the purpose of providing basic information on the mechanism by which the waves 
are built-in at the interface, and hence on the mechanisms of associated transport processes 
in wavy flows, the problem of interfacial stability of liquid films has received considerable 
attention in the literature. The references dealing with various flow configurations are too 
numerous to list here. Only those references which are representative of the wide interest, 
numerous applications and of the variety of methods used in analyzing the problem are 
given here. The majority of research efforts thus far have been directed at the interfacial 
stability analysis of isothermal film with free interface (Benjamin 1957, Kapitza 1965; Yih 
1963; Massot et al. 1966; Anshus & Goren 1966) or isothermal flow with adjacent gas 
phase (Lamb 1945; Long 1956) and have neglected the effects of heat transfer and 
interracial phase change. On the other hand all investigations which were concerned with 
the effects of heat and mass transfer on the interfacial stability of liquid films neglected 
the effects of adjoining vapor flow (Bankoff 1971; Marshall & Lee 1973; Lin 1975; Unsal 
& Thomas 1978; Aleimikov 1979; Spindler 1982). Since excellent reviews on this topic have 
been given by Fulford (1964) and most recently by Solesio (1977), a detailed literature 
review is not attempted here. However, it is interesting to note that some inconsistencies 
seem to appear in the literature. As noted by Solesio (1977) and Spindler et al. (1978) most 
of the discrepancies stem from the fact that the kinematic and dynamic interfacial 
conditions used in some of the references were incorrect. 
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This paper has three purposes: (1) to present a two-fluid model formulation of a 
separated two-phase flow system which takes into account the simultaneous effects of 
vapor motion together with heat and mass transfer at the boundaries; (2) to develop from 
this formulation a general stability criterion so that conditions under which small 
disturbances will grow can be calculated by determining the neutral stability condition; (3) 
to apply the criterion to analyze the stability of the liquid film with interfacial shear and 
phase change. 

T W O - F L U I D  M O D E L  F O R M U L A T I O N  

Field equations 
The generalized separated two-phase flow system is illustrated in figure 1, where the 

two phases are distinguished by subscripts 1 and 2. Phases are flowing concurrently in a 
constant area duct with heat flux at the external boundaries and the phase change at the 
interface. The physical system is chosen in such a way that the resulting interfaeial stability 
criterion can be used for the analysis of two-dimensional plane flow and axially symmetric 
annular two phase flow configurations. 

Space-averaged field equations were originally proposed by Delhaye (1962) and Vernier 
& Delhaye (1968). The study of these equations and their application, within the frame 
of the two-fluid model, to a problem of liquid film hydrodynamics is given by Ko- 
camustafaogullari (1971). According to the two-fluid modeling of two-phase flow systems, 
each phase is formulated in terms of two sets of field equations governing the kinematic, 
dynamic and energetic fields of each phase. A local formulation of the problem is given 
in appendix A. To simplify the problem, a detailed consideration of the relative magnitude 
of the various dimensionless parameters, a justification for neglecting various terms, and 
a discussion of appropriate scaling can also be found in the appendix. Integrating the 
simplified equations, [A24] and [A25], over the cross-sectional area of respective phases and 
using area-averaged variables, quasi-one-dimensional field equations governing each phase 
can be written as: 

kinematic field equations 

o l  

a--7 + = - 
[2l 

dynamic field equations 

c~x + Pig,, + 

(3) 

Figure 1. Typical separated two-phase flow (plane flow or annular flow). 
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p2(a~)±/Ul-  \ 2/---~X :\¢3(u2)'~- 63(P2)- Ox +P2gx-I--d{(P2~-(P2))O-xx 

- rh2z(u2i - (u2>)('JA ) - "f21("JA ) - ~2~('2e[A ) - ~[o~p2 Cov(u22)]} 

[4] 

where subscripts i and e identify the internal and external boundaries whereas A, th, P, 
u, a, ~, p and x are the total cross-sectional area of the flow channel, interracial mass 
transfer per unit area per unit time, pressure, longitudinal velocity component, area based 
void fraction, perimeter, mass density and shear stress, respectively. Finally, ( ( - - - ) )  and 
Coy ( - - - )  define the area-averaged value and covariance of a quantity. They are given 
as follows: 

At 

fc k(x, y, z, t) dA; 
x, t) 

k = 1, 2 [5] 

and 

C o v ( F  2) == ( F  2) --  ( F )  2. 

When [A26] is integrated over the cross-sectional area of each phase, the area-averaged 
pressures, ( PI ) and (P2), can be expressed in terms of the interracial pressures, P~i and/'2,.. 
They are, respectively, 

(P~) = P . -  [(1 - cx)p.g,/2](A/,D [6] 

and 

( P2) = P~ - [o~p2gy/2](A /~i) [7] 

Interfacial balance equations 
Since the macroscopic fields of one phase are not independent of the other phase, the 

interaction terms which couple the transport of mass and momentum of each phase across 
the interface appear in the field equations. Therefore, the two-fluid model requires 
knowledge of interfacial interactions. 

A detailed statement of underlying simplifying assumptions and the derivations of 
interface balance equations are given in appendix A. These balance equations are 
reproduced here for ready reference: 

mass balance 

m. + m~ ffi 0 [8] 

momentum balance 

~2et 
P, , -  P~ = rh~l( AP /PIP2) + (oA /~,) Ox 2 [91 

~ t ~ -  ~ = O. [10] 

These balance equations must be supplemented by the kinematic no relative velocity 
condition at the interface. 

u u  = u21 --- u~. [1 11 
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The set of equations[l]-[l 1] presented here describe, within the frame of a two-fluid 
model, the separated two-phase flow of incompressible fluiods. However, subtracting[3] 
from [4], and using [5]--[11] in the resulting equation, the pressure terms can be completely 
eliminated. Thus, 

, o, co. .,,,lto iw 

[12] 

This equation replaces the dynamic field equations and eliminates (P~>, (P2), P,, and Pn 
from the formulation. 

Constitutive equations 
Considering [1], [2] and [12] one notices that there are three basic dependent variables, 

a, ( ul ) and (u2) and seven supplementary variables, rn, (or m~.), u,-, rl~, rl,, ru, Cov(ul 2) and 
Coy(u22). In order to complete the formal formulation, the supplementary variables should 
be specified by the constitutive relations. They are completely dependent upon the flow 
regimes experienced by each phase. Therefore, depending upon the flow regime they can 
be related to the basic variables. In order to keep the analysis as general as possible one 
can express the functional relationship by 

f=f(ot, <Ul> ) <u2> ) [131 

wherefstands for u~, xl~, ~l,, z,-, Cov(u~ 2) and Cov(u22). Once the flow regimes are specified, 
then these supplementary variables can be specified through the constitutive relations in 
the form of [13]. On the other hand specification of thu or m~ needs special attention. 

By examining the kinematic field equations, it can be seen that the interracial phase 
change represented by thai or th~ acts as a sink; indeed, it plays the same role as the sink 
(or source) terms in the continuity equations of chemically reacting mixtures. Whereas in 
chemically reacting mixtures the sources (or sinks) are specified by appropriate constitutive 
equations of chemical kinetics, in two-phase flow they are specified by appropriate 
constitutive equations of phase change, i.e. of evaporation and condensation. It was shown 
by Zuber & Staub (1966) that the constitutive equations of evaporation (a) depend on the 
two-phase flow structure and (b) determine the thermodynamic non-equilibrium at the 
interface. Therefore, it will have a different form depending on whether the evaporation 
from the liquid film is affected by exposure to hot gases (as in rocket engines), or by heat 
transfer through the liquid film (as in boilers, evaporators or nuclear reactors). Considering 
this last application, the simplest expression for the constitutive equation of evaporation 
or condensation can be obtained by assuming that the vapor is saturated and that the 
thermal equilibrium exists at the interface. Furthermore, assuming a linear temperature 
distribution in the liquid film, the rate of phase change at the interface can be obtained 
directly from an energy balance. Thus, 

kIAT ~i [14] 
rhli = -- th~ = EhLa( 1 _ a) 
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where kl is the thermal conductivity of liquid, h ~  is heat of Vaporization, A T -- I Tw - T,[, 
and E specifies the direction of phase change, ¢ = 1 for evaporation and E = -  1 for 
condensation. 

An assumption related to the temperature distribution implies that the convection heat 
transfer within the liquid film is negligible. The conduction heat transfer essentially allows 
the phase change to take place. As shown by Sparrow & Gregg (1959) the linear 
temperature distribution is good for low values of the Kutateladze number, 
(Ku - Cp~AT/hLo). With increasing values of this parameter there are increasing deviations 
from linearity. As a consequence of neglecting the convection heat transfer, the analysis 
will be limited by Ku < 1. 

STABILITY ANALYSIS 

In order to determine under what conditions waves appearing on the interface lead to 
instability, the behavior of very small perturbations will be examined on the perturbed flow 
equations. To obtain perturbed flow equations, the procedure is outlined as follows: (1) 
the basic flow variables, ~,, (ul> and (u2~ written as: 

F = / e + y '  [15] 

where .P is the time-averaged mean value of any variable F and F'  is its perturbation. (2) 
The supplementary variables are expressed by performing the Taylor Series expansion 
in[13] to obtain 

f(& + a ' , (~,)  + (u~)',(~2) + (u2)')=f+-~aa + (u~)'+ (u2) '+ NT's [16] 

where NT's stand for the nonlinear perturbation terms. Similarly, constant wall tem- 
perature perturbations on the phase change are obtained from [14] as 

rh,,(a + a') -t (1 - ~ t a \ A / \  + ~ + NT's [1~ 

(3) the perturbations given above are substituted in [1], [2] and [12]. Taking into account 
the mean flow equations and discarding all the nonlinear perturbation terms, the flow 
equations are linearized. Since the linearization is possible for long waves, (small amplitude 
in comparison with wave-length), the theory developed here will be applicable for long 
wave perturbations. (4) In a separated two-phase flow with an interracial phase change, 
the mean flow variables, P's, change in the flow direction, x. However, it was demonstrated 
by Bankoff (1971) and Kocamustafaoguilari (1971) that the effect of the phase change in 
the x-direction is very small for moderate values of wall heat flux. Therefore, one can 
consider the mean flow to be a quasi-fully developed flow in which the mean flow variables 
are not varying appreciable in the x-direction so that the multiplication of the perturbed 
quantities with the x-derivatives of the mean flow variables are assumed to be second 
order. To be consistent with the linearization these terms are neglected in comparison with 
the first-order effects. 

Following the linearization procedure outlined above, the perturbed flow equations 
obtained from [1], [2] and [12], respectively, are 

0o " . . 0c¢" O ( u , ) '  k , A T  f , 
Ot + ( 1  - -  0 x  ffi -  p,(1 - [18] 
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a-7 + <u2>Tx + ~- ax p,(i---~hL~ a' [19] 

fa<.~>" ._.a<.,>'k fa<.,>" ...a<.,>'~ + ) -  + ) 

a,,' a,' a<.,>' a@,>' 
= a,-~-Tx 3 + a2~-x- x -- a3---~-~ x + a , -~ - - -  x + asoc' -- a6<u2>' + a,<u,>" [2o] 

where a's are defined in terms of the mean flow variables in appendix B. 
The perturbed flow equations can be reduced into one. For this purpose, [20] is 

differentiated with respect to x, and [18] and [19] are used to express the derivatives of <u~ >' 
and <u2>' in terms of those of ~t'. The resulting differential equation becomes 

~40~, 

+-TL-7-Ij ax" 
o1<,&>'~la2~' (_~ o, \a ~' 

+ {[a5 + ( a 6 ( _ ~ 2 > - _  . aT<",>'~ ]:'~}--('p-~2~ a3+ P,(':") a4 '~ + (<u2> \ T  + l<U'> '~l - o~}_j 

× 
- ~)2hL~JkA ) l J  at 

a6 a 7 \1" ~klA T ~1"~i ~ , 
- = o  (21] 

This differential equation is the characteristic equation from which the stability of the 
system under consideration can be determined. Now, the task of the stability theory 
consists in determining whether the disturbance amplifies or decays for a given time- 
averaged mean flow. 

Stability criterion 
The mean flow with a void fraction of 0~ is assumed to be influenced by a disturbance 

which is composed of a number of discrete partial fluctuations, each of which consists of 
a wave propagation in the mean flow direction. Therefore, analyzing the disturbance into 
normal modes, we seek a solution whose dependency on x and t is given by 

• ' = ~ l  e x p [ / k ( x  - ct)] [22] 

where c is the complex wave celerity, k is the wave number which is related to the wave 
length by k --2n/2, and ~ is the perturbation void fraction amplitude. 

The mean flow depends on the abscissa x. As a consequence, from a mathematical 
point of view, a perturbation amplitude, a,, must be a function of x, the multiple scale 
method. However, to be consistent with the quasi-fully developed flow approximation 
introduced in the previous section, the x-dependency of the characteristics of one 
perturbation is no longer considered, the local approximation method. In this method the 
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x-dependent flow is replaced by its local value at a fixed abscissa, (Spindler 1981). 
However, the method developed here permits the calculation of the characteristic value of a 
perturbation initiated at a given x. 

Introducing [22] in [21], the dispersion relation is obtained and given by 

[kc - (b~k + b2i)] 2 = (b~k ) 2 - b22 + b3 + (2b~b2 + b , )k i  [23] 

where for the purpose of convenience parameters b's are introduced. Defining equations 
for b's are given in appendix B. 

Letting c =- c, + ic~, [23] can be rearranged in a more convenient form as 

(C,  + iC~)2k 2 = U + i V  [24] 

where 

C, = c , -  bl 

C, - c i -  b g k  [25] 
U - ( b l k )  2 - b ,  2 + b3 

V =- (2bib2 + b4)k 

It can be shown that U and V are conjugate harmonic functions, (Churchill 1960). Their 
contour curves, U = const, and V = const., are those shown in figure 2. It is clear from 
the figure that for each value of the harmonic functions U and V, there exists a pair of 
solutions for (7, and Cv Although these solutions are equal in numerical value they are 
different in sign. This situation is not surprising because we are analyzing the dynamic 
waves which propagate in downstream as well as in upstream directions. A positive 4¢alue 
of C,, therefore, corresponds to the wave train propagating downstream with respect to 
bl, whereas a negative value of C, corresponds to the wave propagating upstream. As a 

C i 

I/ I I / 
./ l/  / 

- - / . . / y ,  _. 

L C i 

~ ( k  \\ x~" ,.q, 

/ --~.. / "---_ 

/ 

Figure 2. Stability curves in terms of generalized separated two-phase flow parameters. 
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result it can be concluded that the right hand side of figure 2 corresponds to downstream 
moving waves whereas the left side corresponds to upsteam moving waves. 

Solving [24], the speed of propagation of waves and the growth factor are, respectively, 
obtained as follows: 

l [(u2+ v')½+ w] 
C~ -- c,--bl = +~ 2 [26] 

and 

k c , - k c , - b 2 =  +[(.U2+V2)½-U~ 
2 

[27] 

Infinitesimal perturbations on the mean value of void fraction will grow or decay in 
amplitude depending on whether ci > 0 or c; < 0. The neutral stability condition (c~ = 0) 
separates the stable from the unstable region. It is evident from figure 2 and [27] that the 
positive values of kC~ are more dangerous than the negative values. Therefore, the 
discussion can be confined for the case where kC~ > 0. In this case, if b2 < 0, kc~ is always 
positive indicating that the flow is unstable. Therefore, the necessary (but not the sufficient) 
condition for the stability of the system should be given by 

b2 < 0. [28] 

The over-all stability criterion follows immediately from [27] as 

k, ci b2..~ [(U2-[" V2)l/2- U..II/2 
= - < 0  

2 
[29] 

which in view of [23] can be expressed as 

(bJ2b2)2k 2 + 2(b4/2b2)bik 2 - b3 <- 0 [30] 
where the equality sign stands for the neutral stability condition. Equation [28], together 
with [29] or [30], yields the stability criteria of interfacial waves for a separated two-phase 
flow system with phase change and interfacial shear. The criteria were established in terms 
of the generalized parameters of the separated two-phase flow system. Therefore, one can 
use the criteria to analyze the Kelvin-Helmholtz instability, the Rayleigh-Taylor in- 
stability or the stability of a free film flow provided the parameters such as a's and b's 
defined in appendix B are evaluated properly. We shall apply what follows to the criteria 
to analyze the stability of laminar film flow with interfacial shear and phase change. 

APPLICATION 
Stability of laminar liquid film flow with interfacial shear and phase change 

Mean flow parameters. The basic flow, the stability of which is to be investigated, is 
the laminar flow of a thin film of a Newtonian liquid with constant properties under the 
action of gravity and adjacent vapor flow. Here the liquid film is bounded on the one side 
by the solid plate and on the other by an interface subject to a constant interfacial shear 
exerted by its saturated vapor, figure 3.. The plate is maintained at constant temperature, 
Tw. Furthermore, it is assumed that the liquid film thickness is much smaller than the vapor 
layer thickness so that one can approximate the concentration ration by 

- -  - - .  O. [3  l ]  
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4" 

EVAPORATION CONDENSATION 

Figure 3. Plane fiquid film flow with phase change (Spindler 1982). 

Under the assumptions listed above, the base flow momentum and continuity 
equations, i.e. the zeroth order terms of (el Rei) in [A16] and [A17]I are used to obtain 
the base flow velocity and film thickness profiles. They are given, respectively, by 
Rohsenow et al. (1956), as follows: 

and 

-4 - 4  4 / ' ' ~ 4  f t i  -3 3 ~( 41atkldT ~x 
~\apgx/ [331 

where t/0 is the mean film thickness at x = 0. For evaporation ~/0 # 0. For condensation 
without pre-existing liquid film, t/0 = 0. 

Averaging Ul over the local film thickness t/, it is readily shown that 

(61) = \  3Ill ) \2#1) [34] 

Furthermore, in view of [32] and [34], the mean flow supplementary variables u., TI. and 
CoV(Ul 2) can be expressed in terms of the basic flow variables r /and (u~). They are as 
follows: 

3 1 fi,,7 [35] 

60 \  •, [371 

Stability criteria. In view of [31, 33-371, the parameters a's and b's defined by 
[B1HBI 1] are calculated in terms of the basic flow parameters. Using these parameters, 
the stability conditions are calculated from [28] and [30] whereas the speed of propagation 
and the growth factor are determined from [26] and [27], respectively. The resulting 
equations are expressed in terms of appropriate dimensionless parameters. The results are 
as follows: 

the necessary condition 

Ku/6 Pr < 1 [38] 
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the dimensionless overall stability condition 

{ /Ku\2  6 ( I zt*~/*2'~ 
Ka r/*3k*4- g't/*3 + 2 p * t ~ r )  + ~ Re 2 1 ~ R-e" "/ 

Re2[.l_+_~0(~_~) l,.t/.2) 236 +90~ pr)-'~ [K._~u, 
L 

3c t [1 ~ Ku~/Ku~ 

the dimensionless wave velocity 

the dimensionless temporal growth factor 

E Ku 

Z~q*27) 

[39] 

[40] 

k'c* =-  ~( 1 ~*Re6Pr) + [.(U*2+V*2)'/2-U*] ' / 2 2  [41] 

where U* and V* are defined as 

U* = ~e2{K.al'~ *3k '4 - Ig*l~ "3 - 6 Re2 - l ' f  ,~ "5(1 Jr 3 "f t'~ ~ . )  

*/Ku\2-] , 2  3~(I I Ku'~/Ku'~ 1 9 /  ~Ku\  2 1 ") 

1 F27/ 7~ Ku~Re 
+54"P'~r)~ --3(12-~ E K u \ ,  , - l ,  V* = R---'~. 5-~1 -~:~--~)~, n Jk. [43] 

In these equations, dimensionless quantities, i.e., the Kapitza number Ka, Kutateladze 
number Ku, Prandtl number Pr, Reynolds number Re, film thickness parameter r/*, wave 
number k*, inteffacial shear ~*, gravity parameter g*, density ratio parameter p*, 
dimensionless wave velocity c* and dimensionless temporal growth factor c*, are all 
defined as follows: 

Ka -= (¢3pl2/l~14Apgx)l/3; 

Ku -- CpldT/h~; 

Pr - Cpdh/k6 

Re -= :,~(u,)//h; 
r] * = r l ( p l A p g x / I . l l 2 )  113, 

k* =-- k(pt2/plApg~) v3 

g* - g,/gx = -co tg0  

p* -= ( p l -  p2)/p2 

~*  =- c , l (~ , )  

c*  - c , l ( ~ , )  

[44] 

When expressed in terms of dimensionless parameters, the base flow solutions, [34] and 
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[35], respectively, become 

4 4 , 3 ~/ ,3)  = + [46] 

where x* is the dimensionless distance, (x* E x(Ku/Pr)(OlApgx/#12)l/3. 
In view of [45] only two of the dimensionless quantities (Re, q*, ~*) can be chosen 

independently. Although the Re number is a proper one for the liquid film flow free of 
inteffacial shear (~* = 0) analysis, q* is more appropriate for the film flow with inteffacial 
shear because it represents the sole effect of film thickness. Equation [46] serves to find 
the location in terms of film thickness and interfacial shear. 

R E S U L T S  A N D  D I S C U S S I O N  

Necessary condition. The necessary condition expressed by [38] reveals the region where 
the stability analysis developed here holds. In the case of condensation (¢ = -1 ) ,  it is 
identically satisfied indicating that there exists an absolutely stable film flow region. On 
the other hand, for evaporation (~ = 1), it seems that the condition is not satisfied 
identically. However, numerical evaluation of Kutateladze number and of (Ku/Pr) for 
common fluids (Pr > 1), and even for liquid metals (Cpl/hLc ,~1, and Pr < 1), indicates that 
for practical purposes the necessary condition is always satisfied. Consequently, the 
discussion will be limited to fluids for which (Ku/Pr) < 1. 

The over-all stability condition. With the limitation imposed above and using [45], the 
overall stability condition is simplified with negligible loss of accuracy to 

, K u  2 1 * 3 Ku Ka~*3k*'-[ g*~/'3+2p (~r)+3"*'(l+~*)]k'2-(~)(~r)>0 [47] 

The effects of different parameters on the stability is evident in [47]. Before going into 
numerical evaluation of this criterion, several qualitative conclusions can be drawn from 
it by analyzing the sign of different terms. (1) It is clear that the surface tension parameter 
Ka has a stabilizing effect. However, the presence of k*4 in the same term indicates that 
the surface tension effect is diminished for sufficiently small values of the wave number, 
i.e., for very long waves, which has been well established in the literature, (Benjamin 1957; 
Yih 1963). (2) Now considering the gravity parameter g*, it is evident that if 0 < 90 °, then 
g* = - c o t g  0 < 0, (see figure 3). Therefore, the gravity has a stabilizing effect, whereas it 
has a dostablizing effect for 0 > 90 °. (The Rayleigh--Taylor Instability as demonstrated by 
Chandrasekhar 1961.) (3) The film thickness parameter t/* and the interfacial shear 
p~rameter %* both have destabilizing effects. (4) In the case of evaporation (~ -- 1) it is 
evident that the phase change parameter Ku has a destablizing effect. In the case of 
condensation (~ = - 1), it has both stabilizing and destabilizing effects. The term contain- 
ing (Ku/Pr) 2 has a destabilizing effect because it has a negative sign whereas the last term 
has a stabilizing effect because its sign becomes positive for ¢ = -  1. This tentative 
conclusion agrees well with the result of Unsal & Thomas (1978). 

The relative order of these opposite effects of condensation can be assessed by 
comparing these two terms. Hence, if 

t/*k* - r/k < [(3/2p *)(Pr/Ku)] ~f~ [481 
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then the stabilizing effect overcomes the destabilizing one. This is the case for very long 
waves. For example, for flow of saturated water at 100°C (p~ - 9.6 x 102 kg m-3; P2 = 0.6 kg 
m-J; hLc = 2.3 x 106 Jkg-t; kl = 6.8 x 10 -I Wm-'  K-I; #, = 2.8 x 10 -4 kg m -I s-I), with 
AT = 5.5 K (Ku = 10 -2) [48] yields ~k < 0.4 which can be satisfied for only sufficiently 
small wave numbers, i.e. for long waves. Since the linearized stability theory holds for the 
long wave disturbances, the destabilizing effect can be discarded in the region where the 
analysis applies. It is concluded, therefore, that the condensation phase change has a dual 
role in the stability mechanism with the stabilizing effect dominating over the destabilizing 
effect for sufficiently long waves. 

Neutral stability curves. The quantitative effects of the various parameters on the 
stability are studied by obtaining the neutral stability curves. By setting [47] to zero and 
solving the resulting equation for the wave number yields 

+"c x JJ ,,,<,,,,,,<u,,.,.,.,2 [491 

In view of the approximate limit of laminar liquid film theory (Rohsenow et al. 1956), 
the influence of the following parameters on the stability has been studied on [49]. 

(1) Phase change parameter, 5 x 10 -3 < Ku < 5 x 10 -2. 
(2) Film thickness parameter, 1 < II* _ 10. 
(3) Gravity parameter, - 5.67 < g* < 0(10 ° < 0 < 90°). 
(4) Interfacial shear parameter, 0 < z* < 20. 

For a vertical (g* = 0) water film flow free of interfacial shear (T* = 0), the neutral 
stability curves predicted by [49] are presented in figures 4 and 5 for selected values of 
interracial phase change parameter, Ku. Re = I r/.3 for z* = 0. Therefore, r/*3, instead of 

*, itself is chosen as an abscissa in these figures. This facilitates the comparison of the 
analytical results of this investigation with those of other authors, where Reynolds number 
has been used to represent the influence of the film thickness. An inspection of these figures 
clearly shows the effect of the inteffacial phase change parameter. It promotes instability 
in evaporating liquid films (figure 4), and stabilizes in condensate film flow (figure 5). Either 
in evaporation or condensation, the phase change influence increases as the Kutateladze 
number becomes larger, and its effect becomes more Significant at suflidently low values 
of F/*. As ff * increases the effect of  the interfacial phase change diminishes, and the neutral 
stability curves appear to converge to the curve with no inteffacial phase change (Ku ffi 0). 
However, complete convergence cannot be achieved because of the thermophysical 
properties of  the fluid. In the present analysis the properties are evaluated at the reference 
temperature (Tw + 7",)/2 except for surface tension and latent heat which are evaluated at 
the interface temperature (saturation temperature). Therefore, depending on the value for 
the Kutateladze number, the liquid properties; hence, the Kapitza number changes. For 
example, in the case of  evaporating liquid films (Tw > T,), increasing Ku number increases 
the reference temperature and hence increases the Ka number, which reduces the 
destabilizing effect of  the Kutateladze number. This is deafly seen in figure 4 for sufficiently 
high values of the wave number. On the other hand behavior of  the Kapitza number is 
reversed in the case of condensation. This explains why the neutral stability curves cannot 
approach completely to the isothermal curve. Finally, it is to be noticed in these figures 
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Figure  4. Neu t r a l  s tabil i ty curves,  evapora t ing  water  film flow at  373 K;  g *  = 0, ~* = 0. 

10"1 ' I . . . .  i 

STABLE 

10"2 

UNSTABLE 

10"3 
1. Ku:O 
2. Ku:O.O05 
3. Ku=O.01 
4. Ku=O.025 
5. Ku:O.05 

2 ~  
5 10 10 2 5 .3 

Figure  5. Neu t r a l  s tabil i ty curves ,  condens ing  water  film flow at  373 K ;  g * =  0, ¢~' = 0. , p resen t  
s tudy;  - - - ,  Spindler  (1982) for  K u  = 0.01. 



76 O. KOCAMUSTAFAOGULLARI 

that the stability is greatly affected by the film thickness parameter, ,7 *. The thicker the 
film the more unstable it becomes. As the distance x increases, a thickness decrease 
(evaporation) has a stabilizing effect whereas a thickness increase (condensation) has a 
destabilizing effect. A unique relation between the distance and the film thickness 
parameter is given by [46]. 

As a cheek on the accuracy of this method, also shown in figure 5 is the neutral stability 
curve predicted by Spindler (1982), who used local equations to analyze the influence of 
interfacial phase change on the stability of liquid film flow free of interfacial shear. The 
agreement between Spindler's more accurate results and the present calculations is thought 
to be quite good. 

In the case of condensation, figure 5 shows that there exists a critical film thickness 
parameter q* below which the flow is completely stable indicating that the condensation 
induces an absolute stability. Its value can be determined from [49] by setting the 
discriminant to zero. With E = - 1 ,  it yields. 

p* Ku 2 1 ,3 r* Ku la q*saEg*+2(-~)(-~r ) +~q,  ( l +  ~ ) ] = 2 [ 3 ( - ~ - - r ) K a  ] . [50] 

The critical wave number k* becomes 

, ' ,  ' .( ",*)l'" 

The comparison of [50] with those of other authors, Unsal and Thomas and of Spindler, 
can be made only for a vertical (g*=  0) condensing film flow with no interfacial shear 
(~* = 0). In this case [50] reduces to 

r/* = 1.54(Ka Ku/Pr) Ira. [52] 

When expressed in terms of the nomenclature used in the present study, the critical film 
thickness calculated by these references can be expressed exactly the same as the form of 
[52], apart from replacing the coefficient 1.54 in [52] by 1.48 in the former reference and 
by 1.68 in the latter one. This is a deviation of 4% from Unsal and Thomas' solution, and 
of 5.5% from Spindler's solution. The differences in the coefficient can be explained by the 
different set of field equations used: Local equations (Unsal & Thomas 1978; Spindler 
1982) or equations averaged over the cross sectional area (present study). The real 
advantage of the present analysis is that it is simple and general and, thus, can be used 
in the investigation of the stability of other liquid film flows in the presence of vapor flow. 

For a vertical (g* -- 0) flow free of interfacial shear (~* ffi 0) condensation initiating at 
the leading edge of the plate (q~ = 0), the combination of [52] and [46] yields the critical 
distance x*. Thus, 

x* = 1.41(Ka Ku/Pr) 4m [53] 

This equation states that the flow is always stable for perturbations born at an abscissa 
lower than the critical distance x*, for any wave number. 

Simultaneous effects of  the phase change parameter Ku and the gravity parameter g* 
are illustrated in figures 6 and 7 for a non-vertical flow free of interracial shear. As can 
be seen from these figures the gravity parameter has a clear stabilizing effect when 
0 < 0 < 90 °. However, within the limitations imposed by the assumption made in the 
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analysis the gravity cannot induce complete stability in an evaporating liquid film flow, 
although, it may stabilize waves whose wave numbers are greater than a certain value 
(figure 6). On the other hand in the case of condensation simultaneous stabilizing influence 
of both gravity and phase change is demonstrated by the fact that the stable region 
increases as g* decreases, and in particular by the fact that the value of the critical 
thickness parameter r/* increases as g* decreases (figure 7). For non-vertical flow, F/* can 
be calculated from [50]. When g* ~ 0, a quick cheek of this equation can be made with 
that of Yih (1963), who sought solutions to the Orr-Sommerfeld equation as a power of 
the wave number k*. For sufficiently small values of the wave number, Yih's solution gives 
t#* = 1.36 (cotg 0) 1/3. It has to be compared with the following relation established from 
[50] for Ku = 0 and 3" = 0: 

q *  = - -  1 . 4 4 g  *'/3 ---- 1.44 (cotg 0) 1/3 [54] 

It is to be noted that this result compares favorably with those obtained by Yih, thereby 
again giving support to the simple analysis with integral equations. 

The destabilizing effect of vapor flow on the stability of a vertical water film flow at 
Ku = 0.01 is demonstrated in figure 8. This figure indicates that the increase of interfacial 
shear exerted by the vapor flow can considerably alter the neutral stability curves and 
critical film thickness ~/*. For example, for a vertical water flow at 373 K (Ku = 0.01), [50] 
yields r/* = 2.28 for 3" = 0 and r/* = 0.84 for ~* = 10. Therefore, the destabilizing effect 
of condensation at low thickness parameter is almost completely overcome by the 
destabilizing effect of the interfacial shear. 

Temporal growthfactor. The temporal growth factor k ' c *  is compared in figures 9 and 
10 for a wide range of the basic parameters Ku and r/*. As indicated in figure 9, in the 

,o., L_ 

L . . . .  i - -  I 

t 

k" 

10"2 

UNSTABLE 

t 1.ri,= 0 10-3 -- 2. T i" ~2.5 
3.Ti':5 
4.7i" =10 

10 2 1 10 -3 
q 

Figure 8. Neutral stability curves, water film flow at 373 K; Ku -- 0.01, g* -- 0. , condensation: - - - ,  
evaporation. 
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case of evaporation the growth factor increases with the phase change parameter 
(destabilizing effect), whereas in the case of condensation it decreases with the phase 
change parameter (stabilizing effect). The phase change has almost no influence on the 
maximum growth factor and on the disturbances whose wave number is greater than the 
one corresponding to the maximum growth factor. As can be seen from figure 10 the 
maximum growth factor has a maximum when regarded as a function of the film thickness 
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Figure 11. Maximum growth factor as calculated from the present analysis compared with the growth 
factor as predicted by Anshus & Goren, isothermal flow of water at 293 K (Ku  = 0, g *  = 0, T* = 0). , 

present study; - - - ,  Anshus & Goren (1966). 

parameter. This means that the rate of  growth of small disturbances increases with an 
increasing film thickness parameter for low film thicknesses (less than about 4 for water 
at 373 K) but decreases with increasing film thickness at high film thicknesses. The same 
conclusion was reached by Anshus & Goren (1966) who obtained approximate solutions 
to the Orr-Sommerfeld equation for isothermal film flow free of  interfacial shear. To check 
the accuracy of this method the maximum growth factor obtained from [41] is compared 
with the maximum growth factor curve supplied by Anshus & Goren. The results as a 
function of  the film thickness parameter are shown in figure 11 for a vertical flow of water 
at 20°C (g* ffi 0, z* ffi 0, Ku = 0). The two calculations show very good agreement. 

Figure 12 demonstrates the influence of  the interracial shear parameter. It is interesting 
to note thatthe growth factor for this example goes through a maximum at k* -~ 2 x 10 -2. 
At present we do not have a physical interpretation of  this prediction or the data to check 
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Figure 12. Growth factor vs wave number, vertical film flow of water at 373 K. g*  = 0, K u  ffi 0, ~/* = 4. 
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it. Furthermore, when interpreted together with figure 8 it is to be noticed that as the 
inteffacial shear parameter increases waves initiate in a wider band of wave number 
(destabilizing effect). However, the growth factor of the most unstable wave decreases with 
interfacial shear parameter (smoothing effect of the interracial shear). 

Wave propagation velocity. As calculated from [40], the effects of the various parame- 
ters, film thickness, phase change and interfacial shear, on the wave propagation velocities 
corresponding to the most amplified wave are presented in figure 13. Almost no influence 
of the phase change parameter is observed. Furthermore, a general trend of decreasing 
wave velocity with if* and ~* is indicated. The major reduction occurs in the range of 
q* < 6. For a sufficiently large film thickness parameter the wave velocity approaches the 
surface velocity ui, which in view of [35] can be expressed in dimensionless form by 

I z?~*2 
" *  = , i  " [551 

The asymptotic value of 2 l has been already reported for vertical wavy flow free of 
interracial shear. For flows with large ~* the wave velocity approaches the surface velocity 
at much lower film thickness parameters than for the case of small z*. 

Since the disturbance having the maximum growth factor dominates the interface, one 
should expect fairly well-defined wave velocities corresponding to the most rapidly growing 
wave. Thus in figure 14 are plotted the wave velocities measured by Jones & Whitaker 
(1961), Stainthrop & Allen (1965) and Massot & Irani (1966) for isothermal flow of water 
on a vertical surface. These are compared with the wave velocity of the most amplified 
wave predicted by [40]. Although the data are too scattered to check the detailed shape 
of the wave propagation velocity curve, the present calculation at least predicts the 
observed magnitude and behavior of c* throughout the entire film thickness parameter 
range investigated by the above authors. 

SUMMARY AND CONCLUSION 

Area-averaged two-fluid model formulation of a separated two-phase flow system is 
used to develop a linearized interfacial stability theory. The analysis takes into account 
the effects of phase change at the interface as well as the dynamic effects of the adjacent 
vapor flow on the interracial stability. Instability and wave formation criteria at the 
interface are established in terms of the generalized parameters. Therefore, one can use 
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them for a particular separated two-phase flow configuration provided the parameters are 
calculated properly. 

The general criteria are applied to investigate the stability of laminar liquid film flow 
with interfacial shear and phase change. The influences of the various dimensionless 
parameters, r/*, Ku, g* and z*, on the stability of liquid films are studied with respect to 
the neutral stability, temporal growth factor and the wave propagation velocity. A general 
trend of decreasing stability with increasing r/*, g*, and z* is observed. The relative degree 
of the destabilizing effects of these parameters is established by parametric study with 
reference to water film flow on inclined planes. It is noted that the influences of both 
gravity and interracial shear parameters on the stability are more important with a low 
film thickness parameter. On the other hand, the phase change parameter Ku promotes 
instability in evaporating liquid films, and stabilizes in condensate film flow. In fact, 
condensation interfacial phase change induces an absolute stability. When it is possible the 
theoretical results of the present study are compared with those of other authors. The 
agreement between both the experiments and the much more complicated calculations 
based on other methods and the present results is thought to be quite good. 

In conclusion, the interracial stability analysis developed within the frame of a two-fluid 
model formulation of a separated two-phase flow proves to be quite accurate as judged 
by comparing its results with the available experimental data and with those of much 
longer and more complex analytical investigations valid only for the liquid film flow free 
of interfacial shear. The analysis should be useful in the investigation of the stability of 
other configurations, such as the Kelvin-Helmholtz and the Rayleigh-Taylor instabilities. 
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A P P E N D I X  A 

Order of magnitude analysis 
The physica ! system considered is illustrated in figure 15. A liquid film (phase 1) flows 

on a constant temperature (Tw) under the influence of an adjacent vapor (phase 2) and/or 
gravity. Both phases are in two-dimensional laminar motion. It is assumed that the vapor 
is at saturation temperature (T,) and that the fluid is Newtonian, and that the variations 
of its thermophysical properties are neglected, except for the density in the momentum 
equation (Boussinesq approximation). In the following analysis we perform an order of 
magnitude analysis of the equations of motion to simplify the equations. 

The differential equations governing the kinematic and dynamic field in each phase are 
given as 

I7 .v=0 [A1] 

(av ) p~+V.vv =-VP+V.~+pg-p~(T-  T~)g [A2] 

As noted above the vapor is at saturation temperature; therefore, the last term in [A2] 
should not appear in the vapor motion equation. 

The interfacial mass and momentum balance equations, respectively, are given by 
Delhaye (1974) as 

rh~ + rh 2 = 0 [A3] 

rh,(vt - v2) + (P, - P2)h, - h~.(.r, - ~2) = (V,.~)ah, -V,o- [A41 

pot 
0 ~ ~ ~ 

0x 

Figure 15. Plane film flow under the influence of adjacent vapor flow and/or gravity. 
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and the interfacial no relative velocity requirement is expressed by 

(v2 - vi)'/" = 0 [AS] 

In these equations, V,, th, h, and i are the divergence operator along the interface, 
interracial mass transfer per unit area per unit time, normal unit vector and tangential unit 
vector, respectively. For a two-dimensional flow field, they are given as follows: 

[A6] 

m k - a k ( v k - v i ) ' A t ;  k = l , 2  [A7] 

far/I ~2 l -  t~ h, " - h2 - ( -- ~"~'~ i ' + f ) [ l  + ~,'~'x ) j [AS] 

k /J 
[Ag] 

The field equations together with the interfacial conditions can be simplified by making 
the thin film approximation in the vapor. The thin film theory is founded on the 
assumption that the film thickness is small compared with the lateral dimensions of the 
bounding surface. Thus if r/I , denotes a typical value of the film thickness r/l(X, t), and 1 
denotes a typical longitudinal dimension, we introduce a dimensionless scaling parameter 
el by 

el --- t/i,/l ~ 1. [AIO] 

The thin film approximation given above is purely a geometrical one. However, its 
dynamic implication for viscous fluids can be obtained by comparing the viscous diffusion 
time with the characteristic residence time. If ut, is a typical reference velocity in the 
longitudinal direction, the time a fluid particle spends near the body, the residence time, 
is approximately l/Ul,, while the time required for viscous effects to spread across the film 
thickness is of order rl2,/vm, where vt is the kinematic viscosity. Then the viscous effects can 
spread across the film if the diffusion time is shorter than the residence time: 

rl~,/Vl < l/Ul,. [A11] 

Hence, 

el Rel < 1 [AI2] 

where Rel is the Reynolds number based on the film thickness, Pet - th,Um,/v~. 
The orders of magnitude introduced by [Al0] and [AI2] are in agreement with the 

boundary layer approximation. Therefore, they can be extended to the vapor flow where 
a characteristic boundary layer thickness is assumed to be ~2,. Thus, it will be assumed for 
both phases that 

ek = Th,/l ~ I, k = I, 2 [AI3] 
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and 

e k R e , = < l ,  k = l , 2 .  [AI4] 

We can compare the magnitudes of the various terms in [A1]-[A5]. For this purpose, 
the following dimensionless variables, all of which are sure to be order o f  unity, are 
introduced: 

x + - x / l ;  y~  - yk/th, 

u~ - uduk,; v~ =-- vk/ekuk, 

P~  = ( P , -  P,)/(PkU~,); t + =- too, 

rh + = rhJ(elp,ul,); r + = (7"i - T,)/(T,,- I",) 

AU + =-- Au/(el2Ulrdp/p2); AV + =-- Av/(elul,Ap/p2) [A15] 

where % is a typical frequency of the interfacial motion, whereas Au and Av are phase 2 
to phase I longitudinal and transversal velocity differences at the interface. 

Before introducing these dimensionless parameters into [A1]-[A5], several observations 
can be made. First, in order to be sure u~ is order of unity, a typical value of interfacial 
velocity should be used for the liquid (u~, -- u~,), whereas uz. -= u2® - u~ can be used for 
the vapor motion. Second, it may be pointed out that the pressure drop is non- 
dimensionalizod so as to render the pressure gradient and the inertia effects of  equal 
magnitude, a fact that is well known in the boundary layer analysis. Furthermore, noting 
that the pressure drops in both phases are at the same order it can be seen that 

plu21, ~-- p2u~r. 
When the parameters defined by [AI5] are introduced in [A1]-[A5] we obtain the 

following dimensionless equations: 

Continuity equation 

Ou + Ov + 
+ ~ = 0. [A16] 

0x + vy T 

X Component o f  momentum equation 

/ Ou + +Ou + +Ou+'~ Op+ 
e R e t S o - ~ + u  ~x++V ~y+)= - - e  Rea-~--g-+(Re/Fr)g+ 

/ O2u + 02u+\ 
- q3a T)(Re/Fr)g +~ T + + \[e2a--~- ~ + +Y-]~*~I" 

y Component o f  momentum equation 

/ Ov + +Or + +Ov+'~ 
e2RetS0--~-+u a--~ -t'v a-~'/---- 

lnterfacial mass balance 

I / .q .  + \2"11/2 
m,=av+ l + J 

[A17] 

•P+ + - Re 0-~- V + (Re/Fr)g~ - (flA T)(Re /Fr)g~  T + 

/ a2v+ aZv+'~ [AI81 
+ ere20--" ~ + ~y+2)" 

=(_  +0~ S0r/i~\ F /z..+,,rl-t/: 
Ul ~ - ~ - t - v ~ -  ~-~-)'Ll- l-e ,2~O~+) J • [A191 
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Normal component of interfacial momentum balance 

. fl-Out /mVpI~I~a.Z-lfOutV 
-(aO3eI2 ReI rh+2 + (et - e¢) Rel - "eIlL~x+ - t~ , ) t~  ) ~x+..l[,~x+ J \ P,/ 

-L\Oy t +el ~ - . ~ ) -  k/,~l/k,o2 / \e2/\Oy ~ -I-e 2 ~--~)jk~x+) 

r , , ,  (~';~h'I'Y"fe"~ o,,qtr, 2/0~ i"'~27- ' 
+ L@t-~,~J\~J \~J~-~-~JJL + el k~-~--~J J 

Re 2/o t V l  -,/2 
= --el2We '~,Ox+ZJ L + e, L,~-~) J 

Tangential component of interfacial momentum balance 

+ W W   .uJ +[i .lO, tv-Ir lOut ,ovt~ (Iz,~(p,~'l=(e,~fOu~ + ,Ov~-] 

0r:F e 2{0nFVI '~ =el Maox--:~--L1 + , ~,~--~) j [A21] 

where Fr, S, We and Ma are respectively the Froude, Strouhal, Weber and Marangoni 

numbers defined as: 

Fr 2 -= u,/~,g; S - ¢oJ/u l, 

We -- a/~l,plu~,; Ma - C~AT/#IUl,. [A22] 

Co being the surface tension gradient with respect to temperature. It is a well-known fact 
that surface tension gradients may be caused by gradients in surface temperature, by 
gradients in the concentration of a solute, and by gradients in electrical potential if there 
is an electric charge at the interface. In the analysis presented here, only the former one 
is considered, and the surface tension gradient is evaluated by noting that the vapor is at 
saturation state. Thus, 

~x \ dT2J~dP~J Ox 
[A23] 

where (dT~JdPz) is evaluated through the use of the Clausius-Clapeyron relation. 
The magnitude of the various terms appearing in [A16]-[A21] can be assessed in view 

of the scales introduced by [AI3] and [A14]. Terms with a value of (e Re) and higher are 
retained. The lower are discarded. After the order of magnitude analysis is performed, 
these equations are rewritten in the more common dimensional form as follows: 

au Ov 
+ =- = 0 [A24] 

oy 

p ~ + u ~ x + v  = _ _ _  

aP a2u 
ax + pg" +/=i Oy2 [A25] 
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OP 
0 = - ~.. + pg, [A26] 

vy 

,% = (v2~- i.',i).ot?dzip = plltV,,-- u~, ~'x &' J [A27] 

P l i -  e2~ = ml2(AP /ptP2) - -  O'~2F]I bx 2 [A28] 

/ uA 
/h t'~'y }, -/h ~'~-y ), -- O. [A29] 

In arriving at the above set of equations, a comparison of various terms appearing in 
[AI7]-[A21] was carried out for the case of e, <~ 1 and ekRe, < 1, and the following 
considerations have been taken into account with respect to the order of dimensionless 
groups such as Re/Fr, flAT, (lh/gl)(pffp2) u2, Ma and Ap/p,: 

(1) Four classes of fluids, namely, common fluids, refrigerants, liquid metals and 
hydrocarbons, have been considered. For the purpose of using proper thermophysical 
properties, water for common fluids, Freon-12 for refrigerants, sodium for liquid metals, 
and, finally, methane for hydrocarbons have been selected as representative fluids. 

(2) It has been assumed that (e Re) is about order of 10 -2. 
(3) Considering the free film flow, the ratio of (Re/Fr) is order of unity. Since the value 

of fl for the fluids listed above can only be order 10 - 4 -  10 -3 over a wide range of system 
pressure, and since ( T w -  T,) can only be a few degrees to prevent the nucleate boiling 
which is accompanied by a lower temperature difference in thin liquid film than in pool 
boiling, the free convection term appearing in momentum equations has been neglected. 
That is to say that the buoyancy-driven convection is not the dominating mode of 
instability. 

(4) When evaluated for a wide range of operating conditionsi it was observed that the 
values of (la2/#~)(p~/p2) ~/2 are less than 4 for water, Freon-12 and sodium, and far less than 
unity for methane. Therefore, this term appearing in the interfacial momentum balance 
equations has been assumed to be order of unity. 

(5) The Marangoni effect which appears in the tangential component of the interfacial 
momentum balance has been neglected because the value of (C, Trdp/ptp2hLo) changes 
between 10 -9 and 10 -7 m for the fluids listed above. As pointed out by Sreenivasan & Lin 
(1978) this effect can be relevant only to a very thin film flow in which neither the 
gravity-capillary ripples nor the buoyancy-driven convection is the dominating mode of 
instability. 

(6) In spite of the fact that e~ <: 1, the t e r m  (Ap/P2)el 2 Re, ml +2 has been kept in the 
normal component of interfacial momentum balance because (zip/P2) can be very large for 
very low system pressure operations. It is probably not as important for normal conditions. 

The stability analysis presented in the main body of this manuscript is based on the 
integral equations obtained from the simplified equations, [A24]-[A29]. 

A P P E N D I X  B 

Coefficients a's which appear in [20] are defined as follows:t 

a I -- [BI] 

tFor the purpose of simplicity bar over these flow variables was dropped. It is understood that all quantities 
which appear in these equations belong to the base flow. 
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g~,) [ P' Cov(u?) + ~ Cov(W)] a 2 = d P  - 1--~t ct 

a Cov(W)- ~2 Cov@~)] + '~P~,I,a~ '' 
+ ~ l  PlP~ o= [B2] 

n 3 = 

0 t~%"L°' Coy(W) -/)~ Cov@?)] a [B31 

o 
a, = ~,--z--~, I CoV(Ul ~) -/)~ Cov(u~e)] 

v~,ul) 
[B4] 

a 5 '-,-:',> ",-<-',>~.,s~ [ ' ~],(~) ," (~) (1 - -  ~ )2  ~2 j r lkAj--  ( |  _ ~)l ' l  -t (1 -- ~)l 

.~ . , , . , , ,  ,_ _<.>>+~<.,_<.+,,(~) 
+ ~-t~-} + L,-- ;~. ,  
+ (:, r<t> , .,-<.,> vo-, ,v~ ~ _ ( , ,_vo,,,v,_,~ 

= J k a ~ / k A J  l-=+o,/ka=/k. U 

f '  'V'°',.V~,.'~ '_(~',.Vm'~ 
+ \VL--~-~/k-~/k-XJ - ~k a= i t  A / 

[B51 

a 6 a<.,pt, ~ +=jt, O<u~pA.,tj 
1 [ 0ti, \ [ ~ I , k  1[  0tl, k / f l ,  k 

- , _ . t ~ ) t ~ ;  +;to-~,>:t-~) 
[B6] 

~,-_<._,> . , - ?> ) . (~ ) ( ,  +,v,.,,v,,~ 
a,= o<.,>t, i - ~  4 ' - i---z-; ~Ika-7-~7,)Jk-J/ 

+ ~ ---z; ta-7~3, > i t 7  / - :  tRY77, > J r 7 /  
[BY] 

Coefficients b's which appear in [23] are defined as follows: 

[BS] 

,,--(-A)(," +~)-'[-(,°' +~)+(,' +!)(o -~''" ~:~'~ ~,~ - =  - ~  - ~  -" )2ht~JkAJ J 

~,__ (,,,_~. ~)-'{~(~k- o, + (o,<:> + o.<.>~,_.~ 

+(,,<~,>~ d_,,_>,~l_fo,+ a, 
. - .  : j  ~,.~ , .~;-~..o ~ ' ~  [mo] 

_ , ,  p A - ' D X f  _[aKu~> ,,, 

f<',> <'2>ll(. ,k,~- V~,Y~, 
+ U - ~  + ~ JJ\O~J\-AJJ [B1H 


